Robust Discretization and Solvers for Elliptic Optimal Control Problems with Energy Regularization

Author:

Langer Ulrich1ORCID,Steinbach Olaf2ORCID,Yang Huidong3

Affiliation:

1. Institute for Computational Mathematics , Johannes Kepler University Linz , Altenberger Straße 69, 4040 Linz , Austria

2. Institut für Angewandte Mathematik , Technische Universität Graz , Steyrergasse 30, 8010 Graz , Austria

3. Johann Radon Institute for Computational and Applied Mathematics , Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz , Austria

Abstract

Abstract We consider elliptic distributed optimal control problems with energy regularization. Here the standard L 2 {L_{2}} -norm regularization is replaced by the H - 1 {H^{-1}} -norm leading to more focused controls. In this case, the optimality system can be reduced to a single singularly perturbed diffusion-reaction equation known as differential filter in turbulence theory. We investigate the error between the finite element approximation u ϱ h {u_{\varrho h}} to the state u and the desired state u ¯ {\overline{u}} in terms of the mesh-size h and the regularization parameter ϱ. The choice ϱ = h 2 {\varrho=h^{2}} ensures optimal convergence the rate of which only depends on the regularity of the target function u ¯ {\overline{u}} . The resulting symmetric and positive definite system of finite element equations is solved by the conjugate gradient (CG) method preconditioned by algebraic multigrid (AMG) or balancing domain decomposition by constraints (BDDC). We numerically study robustness and efficiency of the AMG preconditioner with respect to h, ϱ, and the number of subdomains (cores) p. Furthermore, we investigate the parallel performance of the BDDC preconditioned CG solver.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference44 articles.

1. S. Badia, A. F. Martín and J. Principe, Implementation and scalability analysis of balancing domain decomposition methods, Arch. Comput. Methods Eng. 20 (2013), no. 3, 239–262.

2. S. Badia, A. F. Martín and J. Principe, Multilevel balancing domain decomposition at extreme scales, SIAM J. Sci. Comput. 38 (2016), no. 1, C22–C52.

3. L. C. Berselli, T. Iliescu and W. J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Sci. Comput., Springer, Berlin, 2006.

4. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd ed., Cambridge University, Cambridge, 2007.

5. A. Brandt, S. McCormick and J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, Sparsity and its Applications, Cambridge University, Cambridge (1985), 257–284.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3