A Space-Time Finite Element Method for the Eddy Current Approximation of Rotating Electric Machines

Author:

Gangl Peter1ORCID,Gobrial Mario2,Steinbach Olaf2ORCID

Affiliation:

1. 231591 Johann Radon Institute for Computational and Applied Mathematics , Altenberger Straße 69, 4040 Linz , Austria

2. Institut für Angewandte Mathematik , TU Graz , Steyrergasse 30, 8010 Graz , Austria

Abstract

Abstract In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element mesh is fixed in a space-time domain. Based on the Babuška–Nečas theory we prove unique solvability both for the continuous variational formulation and for a standard Galerkin finite element discretization in the space-time domain. This approach allows for an adaptive resolution of the solution both in space and time, but it requires the solution of the overall system of algebraic equations. While the use of parallel solution algorithms seems to be mandatory, this also allows for a parallelization simultaneously in space and time. This approach is used for the eddy current approximation of the Maxwell equations which results in an elliptic-parabolic interface problem. Numerical results for linear and nonlinear constitutive material relations confirm the applicability and accuracy of the proposed approach.

Funder

Austrian Science Fund

Publisher

Walter de Gruyter GmbH

Reference46 articles.

1. A. Alonso Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations, MS&A. Model. Simul. Appl. 4, Springer, Milan, 2010.

2. R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal. 33 (2013), no. 1, 242–260.

3. A. Arkkio, Analysis of induction motors based on the numerical solution of the magnetic field and circuit equations, Dissertation, Acta polytechnica Scandinavica, 1987.

4. L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math. 16 (1966), 1–3.

5. I. Babuška and A. K. Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3