A Data-Driven Method for Parametric PDE Eigenvalue Problems Using Gaussian Process with Different Covariance Functions

Author:

Alghamdi Moataz1,Bertrand Fleurianne2,Boffi Daniele3,Halim Abdul4

Affiliation:

1. Applied Mathematics and Computational Sciences (AMCS) , 127355 King Abdullah University of Science and Technology , Thuwal , Kingdom of Saudi Arabia

2. Faculty of Mathematics , TU Chemnitz , Chemnitz , Germany

3. Applied Mathematics and Computational Sciences (AMCS) , 127355 King Abdullah University of Science and Technology , Thuwal , Kingdom of Saudi Arabia ; and Department of Mathematics “F. Casorati”, University of Pavia, via Ferrata 1, 27100 Pavia, Italy

4. Applied Mathematics and Computational Sciences (AMCS) , 127355 King Abdullah University of Science and Technology , Thuwal , Kingdom of Saudi Arabia ; and Department of Mathematics, Memari College, West Bengal, India

Abstract

Abstract We use a Gaussian Process Regression (GPR) strategy to analyze different types of curves that are commonly encountered in parametric eigenvalue problems. We employ an offline-online decomposition method. In the offline phase, we generate the basis of the reduced space by applying the proper orthogonal decomposition (POD) method on a collection of pre-computed, full-order snapshots at a chosen set of parameters. Then we generate our GPR model using four different Matérn covariance functions. In the online phase, we use this model to predict both eigenvalues and eigenvectors at new parameters. We then illustrate how the choice of each covariance function influences the performance of GPR. Furthermore, we discuss the connection between Gaussian Process Regression and spline methods and compare the performance of the GPR method against linear and cubic spline methods. We show that GPR outperforms other methods for functions with a certain regularity.

Funder

King Abdullah University of Science and Technology

Publisher

Walter de Gruyter GmbH

Reference31 articles.

1. M. M. Alghamdi, D. Boffi and F. Bonizzoni, A greedy mor method for the tracking of eigensolutions to parametric elliptic pdes, MOX-Report no. 67/2022, Politecnico di Milano, Milano, 2022.

2. R. Andreev and C. Schwab, Sparse tensor approximation of parametric eigenvalue problems, Numerical Analysis of Multiscale Problems, Lect. Notes Comput. Sci. Eng. 83, Springer, Heidelberg (2012), 203–241.

3. F. Bertrand, D. Boffi and A. Halim, Data-driven reduced order modeling for parametric PDE eigenvalue problems using Gaussian process regression, J. Comput. Phys. 495 (2023), Article ID 112503.

4. C. M. Bishop, Pattern Recognition and Machine Learning, Inform. Sci. Stat., Springer, New York, 2006.

5. D. Boffi, A. Halim and G. Priyadarshi, Reduced basis approximation of parametric eigenvalue problems in presence of clusters and intersections, preprint (2023), https://arxiv.org/abs/2302.00898.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Methods in Applied Mathematics (CMAM 2022 Conference, Part 2);Computational Methods in Applied Mathematics;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3