Arbitrary High-Order Unconditionally Stable Methods for Reaction-Diffusion Equations with inhomogeneous Boundary Condition via Deferred Correction

Author:

Koyaguerebo-Imé Saint-Cyr Elvi Rodrigue1,Bourgault Yves2

Affiliation:

1. Département de Mathématiques et Informatique , Faculté des Sciences , Université de Bangui , BP 1450 , Bangui , Central African Republic

2. Department of Mathematics and Statistics , University of Ottawa , STEM Complex, 150 Louis-Pasteur Pvt , Ottawa , ON K1N 6N5 , Canada

Abstract

Abstract In this paper, we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBVPHBC) via a lifting of inhomogeneous Dirichlet, Neumann or mixed Dirichlet–Neumann boundary conditions. The IBVPHBC is discretized in time via the deferred correction method for the implicit midpoint rule and leads to a time-stepping scheme of order 2 p + 2 2p+2 of accuracy at the stage p = 0 , 1 , 2 , p=0,1,2,\ldots of the correction. Each semi-discretized scheme results in a nonlinear elliptic equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The elliptic equation corresponding to the stage 𝑝 of the correction is discretized by the Galerkin finite element method and gives a full discretization of the IBVPHBC. This fully discretized scheme is unconditionally stable with order 2 p + 2 2p+2 of accuracy in time. The order of accuracy in space is equal to the degree of the finite element used when the family of meshes considered is shape-regular, while an increment of one order is proven for a quasi-uniform family of meshes. Numerical tests with a bistable reaction-diffusion equation having a strong stiffness ratio, a Fisher equation, a linear reaction-diffusion equation addressing order reduction and two linear IBVPs in two dimensions are performed and demonstrate the unconditional convergence of the method. The orders 2, 4, 6, 8 and 10 of accuracy in time are achieved. Except for some linear problems, the accuracy of DC methods is better than that of BDF methods of same order.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3