A Streamline Upwind Petrov-Galerkin Reduced Order Method for Advection-Dominated Partial Differential Equations Under Optimal Control

Author:

Zoccolan Fabio1ORCID,Strazzullo Maria2ORCID,Rozza Gianluigi3ORCID

Affiliation:

1. Institute of Mathematics , 27218 École Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland

2. Department of Mathematical Sciences ”Giuseppe Luigi Lagrange” , 19032 Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 , Turin , Italy

3. mathLab , Mathematics Area , 19040 SISSA , via Bonomea 265, 34136 Trieste , Italy

Abstract

Abstract In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Péclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Streamline Upwind Petrov–Galerkin technique is used in the optimality system to overcome these unpleasant effects. We will apply a finite element method discretization in an optimize-then-discretize approach. Concerning the parabolic case, a stabilized space-time framework will be considered and stabilization will also occur in both bilinear forms involving time derivatives. Then we will build Reduced Order Models on this discretization procedure and two possible settings can be analyzed: whether or not stabilization is needed in the online phase, too. In order to build the reduced bases for state, control, and adjoint variables we will consider a Proper Orthogonal Decomposition algorithm in a partitioned approach. It is the first time that Reduced Order Models are applied to stabilized parabolic problems in this setting. The discussion is supported by computational experiments, where relative errors between the FEM and ROM solutions are studied together with the respective computational times.

Publisher

Walter de Gruyter GmbH

Reference58 articles.

1. T. Akman, B. Karasözen and Z. Kanar-Seymen, Streamline upwind/Petrov Galerkin solution of optimal control problems governed by time dependent diffusion-convection-reaction equations, TWMS J. Appl. Eng. Math. 7 (2017), no. 2, 221–235.

2. S. Ali, Stabilized reduced basis methods for the approximation of parametrized viscous flows, Ph.D. Thesis, SISSA, 2018.

3. P. R. Amestoy, A. Buttari, J.-Y. L’Excellent and T. Mary, Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Software 45 (2019), no. 1, 1–26.

4. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 15–41.

5. K. Atkinson and W. Han, Theoretical Numerical Analysis, Texts Appl. Math. 39, Springer, New York, 2005.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3