A Framework for Approximation of the Stokes Equations in an Axisymmetric Domain

Author:

Ericsson Niklas1ORCID

Affiliation:

1. Department of Engineering Science , University West , SE–461 86 Trollhättan ; and Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE–412 96 Gothenburg , Sweden

Abstract

Abstract We develop a framework for solving the stationary, incompressible Stokes equations in an axisymmetric domain. By means of Fourier expansion with respect to the angular variable, the three-dimensional Stokes problem is reduced to an equivalent, countable family of decoupled two-dimensional problems. By using decomposition of three-dimensional Sobolev norms, we derive natural variational spaces for the two-dimensional problems, and show that the variational formulations are well-posed. We analyze the error due to Fourier truncation and conclude that, for data that are sufficiently regular, it suffices to solve a small number of two-dimensional problems.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference10 articles.

1. Z. Belhachmi, C. Bernardi and S. Deparis, Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem, Numer. Math. 105 (2006), no. 2, 217–247.

2. Z. Belhachmi, C. Bernardi, S. Deparis and F. Hecht, A truncated Fourier/finite element discretization of the Stokes equations in an axisymmetric domain, Math. Models Methods Appl. Sci. 16 (2006), no. 2, 233–263.

3. C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymmetric Domains. Numerical Algorithms and Tests due to Mejdi Azaïez, Ser. Appl. Math. (Paris) 3, Gauthier-Villars, Paris, 1999.

4. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013.

5. M. Costabel, M. Dauge and J. Q. Hu, Characterization of Sobolev spaces by their Fourier coefficients in axisymmetric domains, preprint (2020), https://arxiv.org/abs/2004.07216.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3