Affiliation:
1. Chemical and Petroleum Engineering, Universidade Federal Fluminense, Niteroi, Rio de Janeiro24220-900, Brazil
Abstract
AbstractExtractive distillation uses a high-boiling point solvent for changing the relative volatility of the azeotropic mixture, whereas pressure-swing distillation is based on the difference of operating pressures for such a purpose. In this paper, said separation technologies were applied to a tetrahydrofuran/ethanol mixture and compared with regard to their thermodynamic and environmental performances. The former was assessed by determining the total exergy destruction rate and rational efficiency of each configuration, while the latter was evaluated by estimating their respective indirect carbon emissions. The results showed that the pressure-swing process has not only the lowest exergy destruction rate (383.1 kW) but also the lowest CO2 emission rate (678.7 kg/h), which is mainly due to its lower thermal energy requirements. A sensitivity analysis was then carried out in order to determine how the carbon emissions respond to both the efficiency and the fuel type of the utility boiler.
Subject
Modelling and Simulation,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献