Author:
Lanteigne Jean-Remi,Laviolette Jean-Philippe,Chaouki Jamal
Abstract
Abstract
This study was motivated by the fact that differential scanning calorimetry (DSC)/differential thermal analysis (DTA) results in literature showed significant exothermic peaks while in overall, pyrolysis is an endothermic phenomenon. The specific heat of the decomposing tires has been determined with a new methodology: instead of assuming constant char properties throughout pyrolysis, the specific heat of evolving solids (char) was evaluated with increasing temperature and conversion. Measured specific heat values were observed to increase until pyrolysis was triggered at 250°C. Then, the specific heat of the solids decreased continuously until 400°C at which point they started to increase. This unexpected trend pointed out that the exothermic peak observed with DSC is an artefact generated by the control system of the apparatus. To overcome this limitation, the energy balance was performed over industrial data and the newly found heat capacity values. The enthalpy of pyrolysis was found to have a term dependent on the weight loss derivative, with a constant value of 410 kJ/kg tires. Two other terms for the enthalpy of pyrolysis have been identified, which were independent of weight loss. The first one is believed to correspond to the sulphur cross-link breakage at low temperature (65 kJ/kg), while the second one, at the final stage of pyrolysis, should correspond to charring reactions approaching the thermodynamic equilibrium (75 kJ/kg). Ultimately, this work proposes a new methodology to determine the enthalpy of pyrolysis with larger scale experimental data.
Subject
Modelling and Simulation,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献