Prediction of Experimental Measurement Data for High Density Polyethylene and Polypropylene Solubility in Organic Solvents

Author:

Hadi Arkan J.1,Hadi Ghassan J.2,Yusoh Kamal Bin3,Najmuldeen Ghazi Faisal3,Hasany Syed F.3

Affiliation:

1. Department of Chemical Engineering, College of Engineering , Soran University , Soran , Erbil , Iraq

2. Al Dour Technical Institution , Technical Education Organization , Tikrit , Salahaldden , Iraq

3. Faculty of Chemical and Natural Resources Engineering , Universiti Malaysia Pahang, Lebuhraya Tun Razak , 26300 Gambang , Kuantan , Pahang , Malaysia

Abstract

Abstract High density polyethylene (HDPE) and polypropylene (PP) solubility in several pure and blend non-polar organic solvents was measured at 365–430 K temperature at atmospheric pressure, with polymer concentration of 0.5–25g in 100 ml of solvent. The activity coefficients were estimated depending on the experimental solubility results for all the polymer-solvent systems. A non-ideal equation combined with activity coefficient was developed based on the crystallinity. A new correlation equation was attained, which is based on the melting temperature and heat of fusion using SSPS software. These two equations were used to predict the solid-liquid experimental data for the binary system polymer-solvent. The distinction between the experimental and model data was assessed by using mean absolute deviation percentage (MAD %). The non-ideal equation based on crystallinity and the new correlations showed low MAD %, displaying a close match with the experimental data.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3