Prediction of Pressure Drop in Venturi Scrubbers by Multi-Gene Genetic Programming and Adaptive Neuro-Fuzzy Inference System

Author:

Esmaeili Hadi1,Mohebbi Ali1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering , Shahid Bahonar University of Kerman , Kerman , Iran

Abstract

Abstract Studying the pressure drop in venturi scrubbers had been the subject of many types of researches due to its importance for removing pollutants from polluted gas. In this study, two new approaches based on Multi-Gene Genetic Programming (MGGP) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were used to predict the pressure drop in venturi scrubbers. The main parameters studied were the throat gas velocity of venturi scrubbers (Vgth), the liquid to gas flow rate ratio (L/G), and the axial distance of the venturi scrubbers (z) as the inputs to the network, while the pressure drop was as the output. One set of experimental data, which was gathered from five different venturi scrubbers including a circular and an adjustable prismatic venturi scrubber with a wetted wall irrigation, a rectangular venturi scrubber and two ejector venturi scrubbers with different throat diameters were applied for this study. The results of ANFIS and MGGP were compared with experimental data and those values from Artificial Neural Networks (ANNs) from our previous work. In this work, the coefficient of the determination (i. e. R2 value) was used to show the prediction ability of these new approaches. Results showed that MGGP and ANFIS can accurately predict the pressure drop in venturi scrubbers with R2 values of 0.9972 and 0.9734, respectively. The results also showed that MGGP has more precision than ANFIS and ANNs. Therefore, based on MGGP, two correlations were generated for two clusters of data. The comparison results between one of these correlations (i. e. correlation 1 with R2 value equal to 0.9937) and other models showed that our correlation has a very good precision and can predict the pressure drop in a more agreement with the experimental data.

Publisher

Walter de Gruyter GmbH

Subject

Modelling and Simulation,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3