Author:
Rashid Harith,Hasan Nurul,Mohamad Nor M. Iskandar
Abstract
Abstract
The role of temperature is important in CO2 capture processes. Unfortunately, detailed analysis on the temperature profile of the absorption column is scarce in the literature. Important factors like CO2 capture capacity and corrosion rate directly depend on temperature of the column. Many side reactions such as solvent degradation, formation of stable salts, corrosion and reduction in CO2 capture are prominent at a higher temperature. This study reports a broad study on the temperature profile for CO2 capture process based on a detailed mathematical model, Kent–Eisenberg vapor–liquid equilibrium (VLE) model. This model is quite accurate in calculating CO2 capture for any specific operating condition. Results produced from Kent–Eisenberg VLE model are consistent with experimental data. This study reports temperature profiles of an absorption column for different operating conditions. Moreover, it was found that CO2 absorption is more effective at low and ambient temperatures than at high temperature confirmed by a peak temperature in all cases and in the lower section of the column, which is attributed to exothermic CO2 absorption in monoethanolamine. This temperature variation of the column will be helpful in designing CO2 capture plants.
Subject
Modeling and Simulation,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献