Investigating Three Different Models for Simulation of the Thermal Stage of an Industrial Split-Flow SRU Based on Equilibrium-Kinetic Approach with Heat Loss

Author:

Kardan Mohammad Hossein1,Eslamloueyan Reza1

Affiliation:

1. School of Chemical and Petroleum Engineering , Shiraz University , Shiraz 71348-51154 , Iran

Abstract

Abstract Modified Claus process is the most important process that recovers elemental sulfur from H2S. The thermal stage of sulfur recovery unit (SRU), including the reaction furnace (RF) and waste heat boiler (WHB), plays a critically important role in sulfur recovery percentage of the unit. In this article, three methods including kinetic (PFR model), equilibrium and equilibrium-kinetic models have been investigated in order to predict the reaction furnace effluent conditions. The comparison of results with industrial data shows that kinetic model (for whole the thermal stage) is the most accurate model for simulation of the thermal stage of the industrial split-flow SRU. Mean absolute percentage error for the considered kinetic model is 4.59 %. For the first time, the consequences of considering heat loss from the reaction furnace on calculated molar flows are studied. The results show that considering heat loss only affects better prediction of some effluent molar flow rates such as CO and SO2, and its effect is not significant on the results. Eventually the effects of feed preheating on some important parameters like sulfur conversion efficiency, H2S to SO2 molar ratio and important effluent molar flows are investigated. The results indicate that feed preheating will reduce the sulfur conversion efficiency. It is also noticeable that by reducing the feed temperature to 490 K, H2S/SO2 molar ratio reaches to its optimum value of 2.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3