Effect of Scale on Hydrodynamics of Internal Gas-Lift Loop Reactor-Type Anaerobic Digester Using CFD

Author:

Vesvikar Mehul S.ORCID,Al-Dahhan Muthanna

Abstract

Abstract This work evaluates the ability of computational fluid dynamics (CFD) to simulate the flow and predict the hydrodynamics of internal gas-lift loop reactor (IGLR)-type anaerobic digester. In addition, it also analyzes if CFD can account for the effects of operating conditions, geometry as well as scale of the reactor. For this purpose, three-dimensional two-phase CFD simulations were performed using CFX for laboratory-scale and pilot-scale IGLR. The CFD predictions were evaluated against experimental data obtained from computer automated radioactive particle tracking (CARPT). The CFD predictions provided good qualitative but only reasonable quantitative comparison. After validation of CFD model, effect of gas flow rate, draft tube diameter, sparger geometry and reactor scale on flow pattern, liquid velocity and dead volume was investigated. Higher gas flow rates did not offer any significant advantage in increasing liquid circulation in the downcomer or decreasing the dead volume. Configuration with draft tube diameter half of tank diameter, equipped with cross sparger showed comparatively better liquid circulation than other configurations. For same superficial gas velocity, increasing the scale increases the magnitude of liquid velocity but fails to match the mixing intensity observed in laboratory scale. Different interphase forces, turbulence models and closures are also evaluated to improve the predictability of CFD models.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Reference92 articles.

1. Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles;Lu;Chem Eng Sci,1995

2. Mass transfer of gas-liquid-solid three-phase internal loop airlift reactors with nanometer solid particles;Wen;Chem Eng Technol,2005

3. drops andparticles New York Academic;CliftR,1978

4. Hydrodynamics of a three-phase airlift reactor with an enlarged separator—application to high cell density systems;Klein;Can J Chem Eng,2003

5. Closure relations for CFD simulation of bubble columns Eighth international conference on multiphase flow Korea;ZeigznheinT,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3