Abstract
Abstract
This work evaluates the ability of computational fluid dynamics (CFD) to simulate the flow and predict the hydrodynamics of internal gas-lift loop reactor (IGLR)-type anaerobic digester. In addition, it also analyzes if CFD can account for the effects of operating conditions, geometry as well as scale of the reactor. For this purpose, three-dimensional two-phase CFD simulations were performed using CFX for laboratory-scale and pilot-scale IGLR. The CFD predictions were evaluated against experimental data obtained from computer automated radioactive particle tracking (CARPT). The CFD predictions provided good qualitative but only reasonable quantitative comparison. After validation of CFD model, effect of gas flow rate, draft tube diameter, sparger geometry and reactor scale on flow pattern, liquid velocity and dead volume was investigated. Higher gas flow rates did not offer any significant advantage in increasing liquid circulation in the downcomer or decreasing the dead volume. Configuration with draft tube diameter half of tank diameter, equipped with cross sparger showed comparatively better liquid circulation than other configurations. For same superficial gas velocity, increasing the scale increases the magnitude of liquid velocity but fails to match the mixing intensity observed in laboratory scale. Different interphase forces, turbulence models and closures are also evaluated to improve the predictability of CFD models.
Subject
Modeling and Simulation,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献