Level Control of Coupled Tank System Based on Neural Network Techniques

Author:

Sousa B. S.1,Silva F. V.1,Fileti A. M. F.1

Affiliation:

1. Department of Chemical System Engineering, University of Campinas (UNICAMP), Avenida Albert Einstein, 500, Campinas13083-852, Brazil

Abstract

AbstractThe control design of coupled tanks is not an easy task due to the nonlinear characteristic of the valves, and the interactions between the controlled variables. Those features pose a challenge in the automatic control, so that linear controllers, such as conventional PID, might not work properly for regulating this MIMO system. Some advanced control techniques (e. g. control based on neural networks) can be used since neural networks are universal approximators which can deal with nonlinearities and interactions between process variables. In the present work, an experimental investigation was performed presenting a comparison between two neural network-based techniques and testing the feasibility of these techniques in the coupled tanks system. First principles simulations helped to find suitable parameters for the controllers. The results showed that the model predictive control based on artificial neural networks presented the best performance for supervisory tests. On the other hand, the inverse neural network needed a very accurate model and small plant-model mismatches led to undesirable offsets.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Reference56 articles.

1. Artificial neural networks in process estimation and control;Automatica,1992

2. Distributed model predictive control of an experimental four-tank system;J Process Control,2007

3. Multivariable predictive PID control for quadruple tank;Int J Mech Mechatron Eng,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3