Maximizing Demineralization during Chemical Leaching of Coal through Optimal Reagent Addition Policy

Author:

Dash Pratik S.,Prasad D. N.,Sriramoju Santosh K.,Lingam R. K.,Suresh A.,Banerjee P. K.,Ganguly S.

Abstract

Abstract The main objective of the optimal reagent addition was to maximize the quantity of product with minimal quantity of feed. In the present study, the optimal addition of reagents during the chemical leaching of coal was computed. Chemical leaching of coal was carried out using aqueous solution of caustic to dissolve and remove the mineral matter. Simulation studies were carried out using the optimal reagent addition for chemical leaching of coal in batch reactors. This was experimentally validated, using the bench-scale reactor setup with hierarchical optimization architecture. Chemical leaching experiments were conducted using West Bokaro coal. Samples collected at various time intervals during the experiment were analyzed. Variations in silica (SiO2) and alumina (Al2O3) concentrations, which were main constituents present in coal ash, were evaluated with respect to time for different concentrations of caustic. The simulation studies for optimal addition were carried out at 6, 8 and 10 intervals. An objective function, required for maximum ash removal, was solved, using sequential quadratic programming (SQP) algorithm to find out the optimum sequence for reagent dosing. An improvement of about 1% (wt) ash reduction on an average was observed with implementation of optimal reagent addition.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leaching of coal by trioxoboric acid for coal cleaning;Physicochemical Problems of Mineral Processing;2021-08-21

2. Optimization study of sodium hydroxide consumption in the coal demineralization process;Mineral Processing and Extractive Metallurgy Review;2017-12-21

3. Optimization of Process Conditions for Leaching of Middling Coal;International Journal of Coal Preparation and Utilization;2016-08-09

4. Mechanism of a Coal Chemical-Leaching Process and Recovery of Spent Chemicals: A Pilot-Scale Study;International Journal of Coal Preparation and Utilization;2016-07-11

5. Upgrading coal washery rejects through caustic-acid leaching;Mineral Processing and Extractive Metallurgy Review;2015-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3