Evaluating the Performance of Newly Integrated Model in Nonlinear Chemical Process Against Missing Measurements

Author:

Mickel Vivianna MariaORCID,Yeo Wan SiengORCID,Saptoro AgusORCID

Abstract

Abstract Application of data-driven soft sensors in manufacturing fields, for instance, chemical, pharmaceutical, and bioprocess have rapidly grown. The issue of missing measurements is common in chemical processing industries that involve data-driven soft sensors. Locally weighted Kernel partial least squares (LW-KPLS) algorithm has recently been proposed to develop adaptive soft sensors for nonlinear processes. This algorithm generally works well for complete datasets; however, it is unable to cope well with any datasets comprising missing measurements. Despite the above issue, limited studies can be found in assessing the effects of incomplete data and their treatment method on the predictive performances of LW-KPLS. To address these research gaps, therefore, a trimmed scores regression (TSR) based missing data imputation method was integrated to LW-KPLS to formulate trimmed scores regression assisted locally weighted Kernel partial least squares (TSR-LW-KPLS) model. In this study, this proposed TSR-LW-KPLS was employed to deal with missing measurements in nonlinear chemical process data. The performances of TSR-LW-KPLS were evaluated using three case studies having different percentages of missing measurements varying from 5 % to 40 %. The obtained results were then compared to the results from singular value decomposition assisted locally weighted Kernel partial least squares (SVD-LW-KPLS) model. SVD-LW-KPLS was also proposed by incorporating a singular value decomposition (SVD) based missing data treatment method into LW-KPLS. From the comparative studies, it is evident that the predictive accuracies of TSR-LW-KPLS are superior compared to the ones from SVD-LW-KPLS.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

Reference110 articles.

1. Local modeling approaches for estimating soil properties in selected Indian soils using diffuse reflectance data over visible to near-infrared region;Geoderma,2018

2. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes;Chem Eng Res Des,2019

3. Virtual sensing technology in process industries: trends and challenges revealed by recent industrial applications;J Chem Eng Jpn,2013

4. Operation and quality control for chemical plants by soft-sensors;CICSJ Bulletin,2006

5. Complex process quality prediction using modified kernel partial least squares;Chem Eng Sci,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3