Optimization of Biodiesel Ultrasound-Assisted Synthesis from Castor Oil Using Response Surface Methodology (RSM)

Author:

Sabzimaleki Mohammadreza,Ghobadian Barat,Mazloom Farsibaf Mohsen,Najafi Gholamhassan,Dehghani Soufi Masoud,Mohammad Safieddin Ardebili Seyed

Abstract

Abstract Production of biodiesel from castor oil (CO) using ultrasound-assisted has been investigated in this study. The objective of the present work was therefore to determine the relationship between various important parameters of the alkaline-catalyzed transesterification process to obtain a high reaction yield in a short time. The response surface methodology (RSM) was used to statistically analyze and optimize the operating parameters of the process. A central composite design (CCD) was approved to study the effects of the reaction time, the methanol to oil molar ratio, the ultrasonic cycle and the ultrasonic amplitude on reaction yield. The optimum conditions for alkaline-catalyzed transesterification of CO was found to be a reaction time of 540 s, methanol to oil molar ratio of 8.15:1,ultrasonic cycle of 0.73% and ultrasonic amplitude 64.34%. By exerting the calculated optimum condition in the process, the reaction yield reached 87.0494%. The results from the RSM analysis indicated that the reaction time has the most significant effect on the reaction yield.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3