Author:
Mehta Shubham,Ramani Harish,Yelgatte Nileshkumar N.,Rahman Imran
Abstract
Abstract
A multiple-input and multiple-output (MIMO) model, namely Recursive Orthogonal Least Square (ROLS) based radial basis function (RBF) is developed to estimate product compositions in a batch distillation process from temperature measurements. The process data is generated by simulating the differential equations of the batch distillation process, changing the initial feed composition and boiluprate from batch to batch. Moreover, the reflux ratio is also randomly varied within each batch to represent the exact dynamics of the batch distillation. Temperature and distillate composition is correlated by the RBF trained by ROLS algorithm. A Single RBF network estimate the quality of products in real-time. The results show that ROLS based estimator give correct composition estimations for a batch distillation process. The robustness of the ROLS algorithm and low computational requirement makes the estimator attractive for on-line use.
Subject
Modeling and Simulation,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献