A novel Six Sigma approach and eco-friendly RP-HPLC technique for determination of pimavanserin and its degraded products: Application of Box–Behnken design

Author:

Nassef Hossam M.12,Ahmed Hoda A.13,Bashal Ali H.1,El-Atawy Mohamed A.14,Alanazi Tahani Y. A.5,Mahgoub Samar M.6,Mohamed Mahmoud A.7ORCID

Affiliation:

1. Chemistry Department, Faculty of Science at Yanbu, Taibah University , Yanbu 46423 , Saudi Arabia

2. Chemistry Department, Faculty of Science, Damietta University , Damietta 34517 , Egypt

3. Department of Chemistry, Faculty of Science, Cairo University , Cairo 12613 , Egypt

4. Chemistry Department, Faculty of Science, Alexandria University, Ibrahemia , P.O. Box 426 , Alexandria 21321 , Egypt

5. Chemistry Department, Faculty of Science, University of Ha’il , P.O. Box 2440 , Ha’il 81451 , Saudi Arabia

6. Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University , Beni-Suef 62511 , Egypt

7. Hikma Pharmaceutical Company , Beni-Suef 62511 , Egypt

Abstract

Abstract A green analytical chemistry study attempts to generate environmentally friendly alternatives to dangerous compounds while reducing waste output. The study thoroughly analyzed eight green tools to determine their greenness. Given its importance in treating hallucinations and delusions produced by Parkinson’s disease psychosis, it is critical to have a reliable and precise method for identifying pimavanserin (PVS) in both pure form and pharmaceutical formulations. The current study used a straightforward approach to forced degradation experiments to establish a novel reversed-phase high-performance liquid chromatography method for evaluating stability. The method was executed on the Agilent Zorbax Eclipse Plus C18 column (100 × 4.6 mm, 3.5 μm particle size) with ultraviolet detection at 226 nm. The Box–Behnken design is the ultimate solution for identifying optimal chromatographic conditions in a timely and efficient manner, with minimal trials required. The study investigated the impact of three factors: acetonitrile ratio, column oven temperature, and flow rate on various responses, namely, retention time, tailing factor, and theoretical plates. Desirability and overlay plots were utilized to forecast the best mobile phase containing a buffer solution: acetonitrile: tetrahydrofuran in a ratio of (65: 20: 15, v/v/v), which proved highly effective in the experiments. Linearity was conducted for PVS in the 3–50 µg·mL−1 range with an R 2 coefficient of determination of 0.9997. PVS had detection and quantification limits of 1.1 and 3.5 µg·mL−1, respectively, indicating a highly significant correlation between the variables studied. PVS’s recovery percentage was determined to be 101.30%. We also used the Six Sigma lean technique to ensure precision and productivity. PVS was tested for acid, base, oxidative hydrolysis, photodegradation, and heat, as per International Council for Harmonisation guidelines. The highest degradation was obtained from oxidative hydrolysis and thermal degradation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3