Novel potentiometric methods for the estimation of bisoprolol and alverine in pharmaceutical forms and human serum

Author:

Elgendy Khaled1,Elmosallamy Mohamed A.F.1,Soltan Moustafa K.2,Amin Alaa S.3,Elshaprawy Dina S.4

Affiliation:

1. Department of Chemistry , Faculty of Science, Zagazig University , Zagazig , Egypt

2. Faculty of Pharmacy , Zagazig University , Zagazig , Egypt , Oman College of Health Sciences , Oman

3. Department of Chemistry, Faculty of Science , Benha University , Benha , Egypt

4. Department of Chemistry, Faculty of Science , Zagazig University , Zagazig , Egypt

Abstract

Abstract Two new potentiometric sensors were created for the quantification of bisoprolol fumarate and alverine citrate in bulk pharmaceutical dosage forms and human serum. Bisoprolol and alverine sensors were manufactured by combining potassium tetrakis (p-chlorophenyl) borate ion pairs to serve as electroactive substances, plasticized poly (vinyl chloride) matrix membranes, and o-nitrophenyl octyl ether. They demonstrated high responses over the concentration ranges of 1.0×10−6 to 1.0×10−2 mol L−1 bisoprolol and alverine with close to Nernstian cationic slopes of 52 and 56 mV decade−1, respectively. The detection limits for bisoprolol and alverine were 2.6×10−6 and 1.75×10−6 mol L−1, respectively. For both medications, the response time was instantaneous (2.0 s). The working pH ranges for bisoprolol and alverine were 4.50–8.50 and 2.00–8.80, respectively. For both sensors, the life cycle was long (3 months). The sensors were used in pharmaceutical dosage types for the assay of bisoprolol and alverine, recording average recoveries of 99.40% and 99.98% respectively and were also successfully used for estimating the two drugs in human serum with an average recovery of 99.60% for both drugs. For all multiple staged interfering materials, the reported latest potentiometric sensor methods displayed high selectivity. The current sensor obtained a high percentage recovery and an excellent relative standard deviation compared with those obtained from previously published methods.

Publisher

Walter de Gruyter GmbH

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3