Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi(III) and Al(III) in pharmaceutical samples

Author:

Ammar Jumana W.1,Khan Zainab A.2,Ghazi Marwa N.1,Naser Naser A.1

Affiliation:

1. Department of Chemistry, Faculty of Science , University of Kufa , , Najaf Governorate , Iraq

2. Department of Chemistry, Faculty of Education for Girls , University of Kufa , , Najaf Governorate , Iraq

Abstract

Abstract A modern development discusses the synthesis and validity of simple, sensitive, and versatile spectrophotometric methods for Bi(III) and Al(III) determination in pharmaceutical formulations have been conducted. In the present paper, 4-(4 acetamidophenylazo) pyrogallol has been synthesized as a new organic compound, 4-APAP, by coupling pyrogallol in a regulated pH medium with diazotized p-aminoacetanilide. 4-APAP was identified by methods of FT-IR, 1H-NMR, 13C-NMR, and thermal analysis (thermogravimetry and differential scanning calorimetry). Solvatochromic activity was also studied in solvents with different polarities. The Kamlet and Taft linear solvation energy relationship was used to correlate shifts in UV-Visible spectra of 4-APAP with Kamlet-Taft parameters (α, β, and π*). The optimum assay conditions showed linearity from 0.3–13 to 0.5–11 μg·mL−1 for Bi(III) and Al(III), respectively. Molar absorptivity values were 3.365 × 104 and 0.356 × 104 L·mol−1·cm−1 for Bi(III) and Al(III), with similar Sandell's sensitivity measures of 0.006 and 0.008 μg·cm−2. Detection limits and quantification limits were 0.013 and 0.043 μg·mL−1 for Bi(III), respectively, and 0.018 and 0.059 μg·mL−1 for Al(III) with the relative standard deviation for determination of both metal ions using 4-APAP probe being <2.0%. The validity, accuracy, and efficiency of the approaches were demonstrated by the determination of Bi(III) and Al(III) in different formulations.

Publisher

Walter de Gruyter GmbH

Subject

Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3