An effective, novel, and cheap carbon paste electrode for naproxen estimation

Author:

Abd-Elsabour Mohamed1,Abou-Krisha Mortaga M.12,Alhamzani Abdulrahman G.2,Yousef Tarek A.23

Affiliation:

1. Chemistry Department, Faculty of Science, South Valley University , Qena , 83523 , Egypt

2. Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) , Riyadh 11623 , Saudi Arabia

3. Department of Toxic and Narcotic Drug, Forensic Medicine, Mansoura Laboratory, Medicolegal Organization , Ministry of Justice , Egypt

Abstract

Abstract Herein, a carbon paste electrode (CPE) modified with poly(reduced-o-nitrobenzoic acid [r-o-NBA]) supported in graphene quantum dots (GQDs) was fabricated for the first time. The fabricated electrode’s surface morphology and composition were characterised by scanning electron microscope and transmission electron microscope. The poly(r-o-NBA)/GQDs/CPE showed high electrocatalytic activity towards the oxidation of naproxen (NPX) using cyclic and differential pulse voltammetric methods. The effect of scan rate on the oxidation peak of NPX suggests that the electrode process was typically diffusion-controlled. In addition, the effect of pH reflects the participation of protons in the oxidation process of NPX. The peak current is linearly proportional to the concentration of NPX ranging from 1.0 to 100.0 µM, with the correlation coefficient (R 2), sensitivity, limit of detection (3σ), and limit of quantification (10σ) being 0.9995, 0.419 µA·µM−1·cm−2, 0.672, and 2.241 µM, respectively. Using chronoamperometry, the diffusion coefficient of NPX at the poly(r-o-NBA)/GQDs/CPE was estimated to be 5.36 × 10−6 cm2·s−1. The proposed electrode has good reproducibility, stability, and high selectivity for NPX oxidation. The obtained recovery range (96.7–102.0%) means that the proposed sensor performed satisfactorily when applied for the detection of NPX in its pharmaceutical formulations.

Publisher

Walter de Gruyter GmbH

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3