Ionic liquids tailored for reaction-based gas sensing on quartz crystal microbalance

Author:

Chang Yi-Pin,Liu Wei-Chun,Tseng Ming-Chung,Chu Yen-Ho

Abstract

AbstractGas sensing technologies are of importance for a variety of industrial, environmental, medical, and even military applications. Many gases, such as man-made or naturally occurring volatile organic compounds (VOCs), can adversely affect human health or cause harm to the environment. Recent advances in “designer solvents” and sensor technologies have facilitated the development of ultrasensitive gas sensing ionic liquids (SILs) based on quartz crystal microbalance (QCM) that can real-time detect and discriminate VOCs. Based on specific chemical reactions at room temperature, thin-coated functionalized ionic liquids on quartz chips are able to capture VOCs chemoselectively with a single-digit parts-per-billion detection limit. The amalgamation of tailor-made functional SILs and QCM results in a new class of qualitative and semiquantitative gas sensing device, which represents a prototype of electronic nose. This review vignettes some conventional gas sensing approaches and collates latest research results in the exploration of SIL-on-QCM chips and gives an account of the state-of-the-art gas sensing technology.

Publisher

Walter de Gruyter GmbH

Subject

Analytical Chemistry

Reference68 articles.

1. Proton - transfer - reaction mass spectrometry MS on - line monitoring of volatile organic compounds at pptv levels;Lindinger;Chem Soc Rev,1998

2. Towards a fully printed electrochemical NO sensor on a flexible substrate using ionic liquid based polymer electrolyte;Kubersky;Chem

3. amphiphilicity and multifunctional applications of ionic - liquid - modified carbon quantum dots;Wang;Appl Mater Interfaces

4. Reaction - based azide gas sensing with tailored ionic liquids measured by quartz crystal microbalance;Tseng;Anal Chem,2014

5. How the olfactory system makes sense of scents;Firestein;Nature,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3