Bias formulas for violations of proximal identification assumptions in a linear structural equation model

Author:

Cobzaru Raluca12,Welsch Roy12,Finkelstein Stan1234,Ng Kenney25,Shahn Zach26

Affiliation:

1. Operations Research Center, Massachusetts Institute of Technology , Cambridge , 02142 MA , United States of America

2. MIT-IBM Watson AI Lab , Cambridge , 02142 MA , United States of America

3. Institute for Data Systems and Society, Massachusetts Institute of Technology , Cambridge, 02142 MA , United States of America

4. Division of Clinical Informatics, Beth Israel Deaconess Medical Center , Boston , 02215 MA , United States of America

5. Center for Computational Health, IBM Research Cambridge , Cambridge , 02142 MA , United States of America

6. Department of Epidemiology and Biostatistics, City University of New York , New York , 10027 NY , United States of America

Abstract

Abstract Causal inference from observational data often rests on the unverifiable assumption of no unmeasured confounding. Recently, Tchetgen Tchetgen and colleagues have introduced proximal inference to leverage negative control outcomes and exposures as proxies to adjust for bias from unmeasured confounding. However, some of the key assumptions that proximal inference relies on are themselves empirically untestable. In addition, the impact of violations of proximal inference assumptions on the bias of effect estimates is not well understood. In this article, we derive bias formulas for proximal inference estimators under a linear structural equation model. These results are a first step toward sensitivity analysis and quantitative bias analysis of proximal inference estimators. While limited to a particular family of data generating processes, our results may offer some more general insight into the behavior of proximal inference estimators.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3