A Pilot Study in Archaeological Metal Detector Geophysical Survey

Author:

Olson Eric1

Affiliation:

1. Department of Liberal Arts and Sciences, Cuyahoga Community College , 11000 West Pleasant Valley Rd. , Parma , OH, 44130 , United States of America

Abstract

Abstract Metal detection (MD) has traditionally been viewed as a limited geophysical survey method for the identification of metal objects below the surface. However, this pilot study examines techniques utilizing the “ground balance” function, common to most modern metal detectors, to identify subsurface magnetic anomalies. The results of surveys have yielded inconclusive results on the use of metal detectors for feature identification. However, the results of this study suggest a high potential for more efficient and more productive archaeological reconnaissance surveys. The ground balance function, when combined with systematic sampling and geographic information systems interpolation methods, yields low-resolution subsoil magnetic susceptibility maps. Compared to other geophysical methods, such as gradiometry or electrical resistivity, the depth range of MD is limited. However, this technique, in upland contexts with shallow subsoils or sites with high potential for recent ground disturbing activities, can reveal subtle changes in the subsurface that traditional MD techniques would miss. Further studies are recommended to explore the many situations in which a metal detector can provide an informative alternative, though not a replacement, for other geophysical survey methods. This pilot study was funded by the National Geographic Society’s Early Career Grant program.

Publisher

Walter de Gruyter GmbH

Subject

Education,Archeology,Conservation

Reference40 articles.

1. Chlysta, J., Housel, K., & Manahan, T. K. (2017). 2015 KSU investigation of the round top site (33Su358). Kent: Department of Anthropology, Kent State University.

2. Collins, J., & Molyneaux, B. (2003). Archaeological survey. Archaeologist’s Toolkit (Vol. 2). New York: Rowman Altamira.

3. Connor, M., & Scott, D. (1998). Metal detector use in archaeology: An introduction. Historical Archaeology, 32(4), 76–85.

4. Cross, G. (2008). Soil electromagnetic properties and metal detector performance: Theory and measurement. Defence R&D Canada, Contract report 2009-062. Suffield: Defence Research and Development Canada.

5. Das, Y. (2006). Effects of soil eletromagnetic properties on metal detectors. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1444–1453.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3