Boron removal from silicon melt by gas blowing technique

Author:

Hoseinpur Arman1,Andersson Stefan2,Müller Michael3,Tang Kai2,Safarian Jafar1

Affiliation:

1. Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU) , 7034 Trondheim , Norway

2. SINTEF Industry , 7465 Trondheim , Norway

3. Institute of Energy and Climate Research, IEK-2, Forschungszentrum Jülich GmbH , Wilhelm-Johnen-Straße , 52428 Jülich , Germany

Abstract

Abstract Due to the detrimental effects of boron (B) on the efficiency of silicon (Si) photovoltaic cells, complete boron removal from Si is necessary to produce solar grade Si (SoG–Si, with a maximum limit of 0.1 ppmw boron). Gas refining is a promising technique for boron removal from Si, in which the thermodynamic equilibrium never establishes. Hence, by starting from any B concentration in the melt, the required limit for SoG–Si will be achieved. This research is devoted to studying the refractory interactions’ effect with melt and the chamber atmosphere on boron removal. For this purpose, gas refining experiments were carried out in alumina and graphite crucibles with H2 and H2–3% H2O refining gases. Gas refining in Ar, He, and continuous vacuuming conditions were also carried out to study the effect of chamber atmosphere. The gas refining results are supported by the characterization of the evaporated species by molecular beam mass spectroscopy (MBMS) technique. The MBMS measurements indicated that the boron evaporation occurs by the formation of the volatile species BH x , BO y , and B z H x O y compounds. Most of these compounds are already known in the literature. However, HBO, HBOH, and AlBO (in the case of alumina refractories) were measured experimentally in this work. Results indicate that the evaporation of B in the form of AlBO x compounds leads to higher mass transfer coefficients for boron removal in alumina crucibles. Density-functional theory (DFT) and coupled cluster calculations are carried out to provide a thermodynamic database for the gaseous compounds in the H–B–O–Al system, including enthalpy, entropy, and C P values for 21 compounds.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3