Phase evolution and oxidation characteristics of the Nd–Fe–B and Ce–Fe–B magnet scrap powder during the roasting process

Author:

Xin Wenbin1,Deng Yongchun1,Jiang Yinju1,Yuan Ye1,Wang Pengyu1

Affiliation:

1. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, People's Republic of China

Abstract

AbstractMany developed techniques for rare-earths’ (REs) recovery from magnet scraps are highly sensitive to the oxidative roasting process of scraps under high temperature. This study focused on phase evolution, microstructural changes and element distribution during the roasting of the widely used Nd–Fe–B and high-potential Ce–Fe–B scrap powders at 800°C. The sustained oxidation of Fe to Fe2O3 and the constant formation of composite RE oxides were the main reaction processes with increasing roasting cycles for the two scrap powders. The complete oxidation phases consisted of NdBO3, NdFeO3 and Fe2O3 for the Nd–Fe–B scrap powder, while the final products were NdBO3, GdFeO3 and Fe2O3 as well as individual CeO2 for the Ce–Fe–B scrap powder. An oxygen diffusion front was observed, forming a dark gray oxidized layer with almost the same thickness on the large particle surface. Additionally, a Fe2O3 layer covered the particle surface when the oxidation of the two scrap powders was complete. In oxidized Nd–Fe–B particles, the observed white regions corresponded to the oxidized intergranular Nd-rich phase as indicated by the almost same size and position before and after roasting. In Ce–Fe–B particles, the oxidized intergranular phase appeared to gather and grow, and a RE-rich layer appeared between the oxide/unoxidized layer. Conclusively, the iron-outward diffusion and the oxygen-inward diffusion were dominated by the oxidation of both Nd–Fe–B and Ce–Fe–B particles.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference70 articles.

1. Oxidation of NdFeB-type magnets modified with additions of Co, Dy, Zr and V;Journal of Materials Science,2008

2. Oxidation sizing of iron and iron-neodymium-boron powders;Journal of Materials Science,1991

3. Mechanical properties of sintered Ce-Fe-B magnets;Acta Metallurgica Sinica,2017

4. Research and development of Ce-containing Nd2Fe14B-type alloys and permanent magnetic materials;Journal of Materials Science & Technology,2017

5. A Mössbauer investigation of the dissociation of the Nd2Fe14B phase;Journal of Applied Physics,1999

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3