Kinetics of iron removal from quartz under ultrasound-assisted leaching

Author:

Yang Chang-Qiao1,Li Su-Qin2

Affiliation:

1. National-Provincial Joint Engineering Research Center for Comprehensive Utilization of Symbiotic-Associated Mineral Waste Resources in Bayan Obo, Inner Mongolia University of Science and Technology, Baotou, 014010, China

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China

Abstract

AbstractKinetics of iron removal from quartz under the ultrasound-assisted leaching was explored in this paper, and the effects of temperature, leaching time, stirring speed and ultrasonic input power on iron removal were studied. The results revealed that the reaction kinetics followed the shrinking core model and the product layer internal diffusion was the rate-determining step in the ultrasound-assisted leaching process. The activation energy of the ultrasonic-assisted leaching reaction was 27.72 kJ/mol, which was 7.28 kJ/mol higher than that of the regular method. Moreover, the kinetic equation and mathematical model of iron removal from quartz were established. Compared with the regular leaching, only 40 min were required for the ultrasound-assisted leaching process to achieve an iron removal rate of up to 74%. Under the optimal parameters, SiO2 content of concentrate increased from 99.5828% to 99.9047%, and Fe2O3 content reduced from 0.0857% to 0.0223%. Additionally, it was found that the iron removal rate increased with increasing temperature, stirring speed or ultrasonic power.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3