A novel method to control stress distribution and machining-induced deformation for thin-walled metallic parts

Author:

Bai Qian1,Song Dehua1,Yang Wenmei1,Chen Ziliang1,Tang Jingang2

Affiliation:

1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology , Dalian 116024 , China

2. Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics , Mianyang , 621900 , China

Abstract

Abstract In the precision machining of thin-walled planar components, the initial residual stress of the workpiece could lead to subsequent deformation after machining, which influences the geometrical accuracy of the final parts. Generally, conventional methods, such as stress-relief annealing and vibration stress relief, are implemented to reduce the magnitude of the residual stress. However, the distribution of the residual stress, which is more significant to the machining accuracy for thin-walled parts, is difficult to be adjusted in these methods. This article proposes a novel method to control the stress distribution and magnitude during the manufacturing process and thus reduce the machining-induced deformation for the thin-walled planar part of pure copper. In this method, symmetrical distribution of residual stress is introduced by multi-pass rolling, quenching, stress-relief annealing, and turnover turning. The stress field and deformation of the part are predicted by finite element modeling in the whole process. The part deformation after machining is verified by the experiments. The results show that compared with the traditional stress-relief annealing, this novel method could reduce the part deformation after machining and improve the geometrical accuracy for thin-walled parts.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3