Significant Influence of Welding Heat Input on the Microstructural Characteristics and Mechanical Properties of the Simulated CGHAZ in High Nitrogen V-Alloyed Steel

Author:

Zhang Jing1,Xin Wenbin1,Luo Guoping1,Wang Ruifen1,Meng Qingyong2

Affiliation:

1. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou014010, China

2. Technical Center of HBIS Tangsteel Company, Tangshan063000, China

Abstract

AbstractThe microstructural characteristics and mechanical properties of the simulated coarse grained heat affected zone (CGHAZ) in high N V-alloyed steel have been conducted under different welding heat input, characterized by the cooling time taken from 800°C to 500°C (t8/5). The experimental results show that the microstructure is dominantly composed of lath bainite (LB) and granular bainite (GB) at t8/5 30 s– 90 s. The content of LB decreases with t8/5 increasing, and that of GB increases. When t8/5 further increases to 120 s and 180 s, the microstructure mainly consists of intragranular polygonal ferrite (IPF) and acicular ferrite (IAF). The higher t8/5 leads to the increased content of intragranular ferrite (IGF). Meanwhile, the prior austenite grain size (PAGS) progressively increases from 56 ± 6.0 μm to 148 ± 9.9 μm as t8/5 increases from 30 s to 180 s. Besides, EBSD analysis indicates that the fraction of high angle grain boundaries (HAGBs) is 0.570, 0.427 and 0.624, respectively, corresponding to t8/5 30, 90 and 180 s. Moreover, the impact toughness decreases as t8/5 increases from 30 s to 90 s caused by the increased PAGS and GB content, and then sharply increases with t8/5 exceeding 90 s due to the increased formation of IGF, especially IAF. Furthermore, the high nitrogen content accelerates V(C,N) precipitation, which not only inhibits the coarsening of prior austenite grains, but promotes the formation of IGF, resulting in the increased number of HAGBs and raising impact toughness.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3