Fused deposition modeling of poly(ether ether ketone) scaffolds

Author:

Song Xiaohui1,Shi Dengwen1,Song Pinghui2,Han Xingguo1,Wei Qingsong3,Huang Chuanmo1

Affiliation:

1. College of Mechanical Engineering, Guilin University of Aerospace Technology , Guilin 541004 , China

2. Surgery Department, Industry of Shaanxi 215 Hospital , Xianyang 712000 , China

3. State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan 430074 , China

Abstract

Abstract In this paper, poly(ether ether ketone) (PEEK) scaffold was manufactured using the fused deposition modeling (FDM) technology with a modified platform. The effect of processing parameters of FDM on the porosity and compressive strength of PEEK scaffold with uniform pores (0.8 mm of diameter) was optimized through Taguchi methodology. With the determined parameters, four kinds of PEEK scaffolds with gradient pores (0.4–0.8 mm, 0.6–1.0 mm, 0.8–1.2 mm, and 1.2–2.0 mm) were manufactured. The scaffolds were investigated using scanning electron microscopy. The results showed that the pores of scaffolds were interconnected with rough surface, which can allow the attachment, migration, and differentiation of cells for bone forming. The tensile strength, compressive max strength, and compressive yield strength of scaffolds were between 18 and 35 MPa, 197.83 and 370.42 MPa, and 26 and 36 MPa, respectively. The mechanical properties of the scaffolds can satisfy the loading requirements of human bones. Therefore, the PEEK scaffolds have a potential to be used in tissue engineering as implants.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3