Study on manganese volatilization behavior of Fe–Mn–C–Al twinning-induced plasticity steel

Author:

Lan Fang-jie1,Zhuang Chang-ling12,Li Chang-rong12,Chen Jing-bo3,Yang Guang-kai1,Yao Han-jie1

Affiliation:

1. College of Material and Metallurgy , Guizhou University , Guiyang 550025 , China

2. Key Laboratory of Metallurgical Engineering and Process Energy Saving of Guizhou Province , Guiyang 550025 , China

3. College of Chemistry and Chemical Engineering , Guizhou University , Guiyang 550025 , China

Abstract

Abstract In the smelting process of high manganese steel, the volatilization of manganese will be accompanied. In this article, the volatilization of manganese in high manganese steel was studied by simultaneous thermal analyzer. The results show that the volatilization rate of manganese in high manganese steel increases with increasing temperature and holding time. It is proved by experimental study and data analysis that manganese volatilization follows the first-order kinetics model, and the empirical formula of manganese evaporation is derived. The volatile products of manganese were analyzed by scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the volatile components of manganese mainly consisted of MnO, Mn3O4, Mn2O3, and MnO2. Combined with thermodynamics, the mechanism of manganese volatilization is further analyzed, and two forms of manganese volatilization in high manganese steel are revealed. One is that manganese atoms on the surface of high manganese steel and oxygen atoms in the gas form different types of manganese oxides and then volatilize at high temperature. The other way is that Mn atoms vaporize into Mn vapor and evaporate in high temperature environment, and then are oxidized into different types of manganese oxides. The results of theoretical calculation and experiment show that manganese volatilization is mainly in the first form.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3