Electro-thermal performance evaluation of a prismatic battery pack for an electric vehicle

Author:

Bukya Mahipal12,Meenakshi Reddy Reddygari3,Doddipatla Atchuta Ramacharyulu4,Kumar Rajesh2,Mathur Akhilesh2,Gupta Manish5,Garimella Adithya6

Affiliation:

1. Department of Electrical and Electronics Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education , Manipal , 576104 , India

2. Department of Electrical Engineering, Malaviya National Institute of Technology , Jaipur 302017 , India

3. Department of Mechanical Engineering, G. Pulla Reddy Engineering College (Autonomous) , Kurnool 518007, Andhra Pradesh , India

4. Department of Mechanical Engineering, Institute of Aeronautical Engineering , Hyderabad , Telangana , India

5. Division of Research and Development, Lovely Professional University , Phagwara , Panjab , India

6. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education , Manipal , 576104 , India

Abstract

Abstract In recent years, electric vehicles (EVs) have grown in popularity as a viable way to reduce greenhouse gas emissions by replacing conventional vehicles. The need for EV batteries is steadily increasing. An essential and expensive part of electric transportation is the battery. The operating temperature of the lithium-ion (Li-ion) battery significantly impacts the performance of the EV battery pack. Battery packs undergo temperature fluctuations during the charging and discharging procedures due to internal heat generation, necessitating an examination of the temperature distribution of the battery pack. The geometrical spacing between cells is considered larger and identical and is kept open on two sides for free air circulation. A novel battery thermal management system (BTMS) design is required to effectively dissipate heat from the prismatic battery pack module. The electro-thermal behaviour of the prismatic Li-ion battery pack module was investigated based on the high charge/discharge rate. This study presents the development of a three-dimensional free open-source OpenFOAM computational fluid dynamics model for prismatic cell battery packs that simulates heat generation, air flow field, and temperature distribution across the width and depth of the battery pack module. The prismatic battery pack simulation results are compared with the experimental and simulation results of the cylindrical battery pack. It was also revealed that prismatic cells generate more heat on the backside, requiring battery packs to have increased cooling and space between individual cells to ensure sufficient air circulation for cooling and gas removal. The BTMS is improved by designing with increased space among the prismatic battery cells as compared with the conventional prismatic cell battery pack design.

Publisher

Walter de Gruyter GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3