Effect of P and Ti on the agglomeration behavior of Al2O3 inclusions in Fe–P–Ti alloys

Author:

Dong Siyue12,Wang Rui12,Xie Likui12,Kang Yan12,Li Yihong3,Fan Jing12,Yu Zhiqiang12,Yan Zhijie12

Affiliation:

1. School of Materials Science and Engineering, North University of China , Taiyuan 030051 , PR China

2. Shanxi Key Laboratory of Advanced Metal Materials for Special Environments, North University of China , Taiyuan 030051 , PR China

3. School of Materials Science and Engineering, Taiyuan University of Science and Technology , Taiyuan 030024 , PR China

Abstract

Abstract Nozzle clogging occurs in the interstitial free (IF) steel with high phosphorus (P) more frequently than in IF steel with lower P. To explore the effect of P and Ti on the inclusion behavior in liquid steel, the in situ experiment and theoretical calculations were conducted. High-temperature confocal laser scanning microscopy was used in situ to observe the inclusion behavior at the liquid Fe–P–Ti alloy surfaces, and the attractive and capillary forces were also calculated to quantitatively estimate the effect of P and Ti on the inclusion behavior. The results show that the agglomeration of Al2O3 inclusions involves four steps: dispersed Al2O3 particles in liquid alloy; formation of Al2O3 chain structure; bending of the Al2O3 chain, and sintering and densification of the chain structure. The addition of Ti and P in the steel can increase the agglomeration time of inclusions, indicating the impeding effect of P and Ti on the inclusion aggregation. Furthermore, the orientation factor is proposed to estimate the direction of movement of the small inclusion crossing between large inclusions, and the experimental results confirm its validity.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3