High-temperature corrosion behaviours of nickel–iron-based alloys with different molybdenum and tungsten contents in a coal ash/flue gas environment

Author:

Zhu Ming1,Zhang Xin1,Huang Chunlin1,Lu Jintao2,Zhang Huihui1,Ma Yimeng3,Wang Mingjing1

Affiliation:

1. College of Energy Engineering, Xi’an University of Science and Technology , 58 Yanta Road, 710054 , Xi’an , China

2. Xi’an Thermal Power Research Institute Co. Ltd, National Energy R & D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology , 99 Yanxiang Road, 710032 , Xi’an , China

3. College of Material Sciences and Engineering, Northeastern University , NO. 3-11 Wenhua Road, 110016 , Shenyang , China

Abstract

Abstract High-temperature coal ash/flue gas corrosion behaviours of three nickel–iron based superalloys for boiler tubes with different Mo and W contents (1.8% Mo + 1.2% W for S1 alloy, 0.8% Mo + 0.2% W for S2 alloy, and 0.5% Mo + 2.2% W for S3 alloy) at 650 and 700°C were studied. The microstructure, phase compositions, and morphologies together with element distribution for corrosion products were investigated with a metallographic microscope, a scanning electron microscope equipped with an energy-dispersive spectroscope, and X-ray diffractometer. The results show that the corrosion resistance of the Ni–Fe-based alloy decreases with the increasing total content of Mo and W in the alloy at both 650 and 700°C; the outer layer of the corrosion products was mainly composed of FeCr2O4 while the inner layer was mainly composed of Cr2O3. Peeling of the oxide films formed on the surfaces of S1 and S3 alloys was observed but no obvious spalling was observed for the S2 alloy. The reactions among Mo, W, and S in the coal ash/flue gas increased the internal stress in the oxide scale, which would cause the failure of the oxide scale.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3