Electron Microscope Image Contrast for Thin Crystal

Author:

Cowley J. M.1,Iijima Sumio1

Affiliation:

1. Department of Physics, Arizona State University, Tempe, Arizona 85281

Abstract

Abstract High resolution electron microscope images showing the detailed distribution of metal atoms within the unit cells of complex oxide structures have been recorded recently and as a first approximation may be interpreted as amplitude-object images if obtained with the degree of defocus corresponding to the "optimum-defocus condition" for the phase-contrast imaging of thin phase objects. Detailed observations of images of Ti2Nb10O29 crystals having thicknesses of the order of 100 Å reveal that the thin phase-object approximation, which assumes that only small phase-shifts are involved, is inadequate to explain some features of the image intensities including the variation of contrast with crystal thickness. A very aproximate treatment of the phase contrast due to defocussing of phase objects having large phase shifts is evolved and shown to give a qualitativity correct account of the observations. The variation of image contrast with tilt away from a principle orientation is discussed. From the symmetry of the image contrast it is deduced that the symmetry of the crystal structure as derived from X-ray diffraction studies can not be correct.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inelastic Mach-Zehnder Interferometry with Free Electrons;Physical Review Letters;2022-04-08

2. Scanning two-grating free electron Mach-Zehnder interferometer;Physical Review Research;2021-10-04

3. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy;Microscopy and Microanalysis;2021-08-20

4. Capturing the Moment of Emergence of Crystal Nucleus from Disorder;Journal of the American Chemical Society;2021-01-21

5. Alternative data for the phase determination;Advances in Imaging and Electron Physics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3