Abstract
Abstract
A generalized scheme of allocation of n particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as n → ∞ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics