Affiliation:
1. Steklov Mathematical Institute of Russian Academy of Sciences , Moscow , Russia
Abstract
Abstract
A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment X of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions E
X < 0 and E
XeX
> 0.
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics
Reference23 articles.
1. Athreya K.B., Ney P.E., Branching Processes, Berlin-Heidelberg-New York: Springer-Verlag, 1972.
2. Harris T. E., The Theory of Branching Processes, Berlin: Springer-Verlag, 1963.
3. Haccou P., Jagers P., Vatutin V.A., Branching Processes Variation, Growth, and Extinction of Populations, Cambridge Studies in Adaptive Dynamics, Cambridge, UK: Cambridge Univ. Press, 2005.
4. Jagers P., Branching Processes with Biological Applications, London: Wiley, 1975.
5. Sewastjanow B. A., Verzweigungsprozesse, Munich: R.Oldenbourg Verlag, 1975, xi+326 pp.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献