Big Data in Market Research: Why More Data Does Not Automatically Mean Better Information

Author:

Bosch Volker1

Affiliation:

1. Head of Marketing & Data Sciences, GfK SE, Nuremberg, Germany

Abstract

Abstract Big data will change market research at its core in the long term because consumption of products and media can be logged electronically more and more, making it measurable on a large scale. Unfortunately, big data datasets are rarely representative, even if they are huge. Smart algorithms are needed to achieve high precision and prediction quality for digital and non-representative approaches. Also, big data can only be processed with complex and therefore error-prone software, which leads to measurement errors that need to be corrected. Another challenge is posed by missing but critical variables. The amount of data can indeed be overwhelming, but it often lacks important information. The missing observations can only be filled in by using statistical data imputation. This requires an additional data source with the additional variables, for example a panel. Linear imputation is a statistical procedure that is anything but trivial. It is an instrument to “transport information,” and the higher the observed data correlates with the data to be imputed, the better it works. It makes structures visible even if the depth of the data is limited.

Publisher

Walter de Gruyter GmbH

Reference4 articles.

1. Fenn, Jackie (1995): The Microsoft System Software Hype Cycle Strikes Again

2. Gaffert P., Bosch V., Meinfelder, F. (2016): “Interactions and squares. Don’t transform, just impute!,” Conference Paper, Joint Statistical Meetings, Chicago

3. http://www.ibmbigdatahub.com/infographic/four-vs-big-data

4. http://fivethirtyeight.blogs.nytimes.com/2012/11/10/which-polls-fared-best-and-worst-inthe-2012-presidential-race/?_r=0

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Źródła informacji o zachowaniach widzów telewizyjnych z wykorzystaniem pomiaru RPD.;Zagadnienia Informacji Naukowej - Studia Informacyjne;2024-02-11

2. EARLY VALIDATION OF HIGH-TECH STARTUPS BY USING (BIG) DATA;International Journal of Innovation Management;2023-06

3. Thinking big – here comes the sun;International Journal of Market Research;2023-04-26

4. Emerging Trends and Innovative Methods in Global Marketing: A Review Paper;The Payam-e-Marefat-Kabul Education University;2023

5. Numeric Big Data Analytics for Successful Decision Making: A Case Study from the Retail Industry in Canada;2022 International Arab Conference on Information Technology (ACIT);2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3