Unraveling the influence of biomaterial’s functional groups in Cd biosorption: a density functional theory calculation

Author:

Oyegoke Toyese1ORCID,Igwebuike Chidiebere Millicent2ORCID,Oyegoke Ademola3

Affiliation:

1. Chemical Engineering Department , Ahmadu Bello University , Zaria , Nigeria

2. IMT Atlantique, GEPEA , UMR CNRS 6144 , F-44000 Nantes , France

3. Chemistry Department , Government Science Secondary School Pyakasa-Maitama , Abuja , Nigeria

Abstract

Abstract Several biomass wastes, including forest wastes, bagasse, algae, and others, have been studied to determine their biosorption capability for adsorbing different ranges of heavy metals in the literature. Most experimental studies have not clearly shown the impact of functional groups in biomaterials discovered by FTIR analysis on the investigated biosorption processes. Because of this, the findings of this study indicate that it is necessary to theoretically investigate the influence of identified functional groups (as determined by FTIR analysis) on the biosorption activities of the sorbent or biomaterial prepared for the removal of cadmium metal from an effluent. Using the most geometrical structure for cadmium (Cd) metal, a series of identified functional groups for the sorbent were analyzed using FTIR to determine their mode and intensity of interaction to computationally understand better how they each influence the biosorption of cadmium. This was done to determine how each functional group contributes to the intensity of the cadmium biosorption, using a ground-state B3LYP density functional theory calculation performed in a Spartan 20 simulation package utilizing the 6-31G* and LANL2DZ > Kr basis sets. According to the study’s findings, carboxylate (–COO*) had the most significant effect on cadmium biosorption activity of all the functional groups studied due to the stronger binding strength obtained for it. Therefore, this research suggests exploring biomaterials with greater intensity for carboxylate function, which would aid cadmium sorption efficiency in an effluent treatment process.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3