How to get deeper insights into the optical properties of lanthanide systems: a computational protocol from ligand to complexes

Author:

Carlotto Silvia123,Babetto Luca1,Rancan Marzio23,Bottaro Gregorio23,Casarin Maurizio1,Armelao Lidia134

Affiliation:

1. Department of Chemical Sciences (DiSC) , University of Padova , via F. Marzolo 1, 35131 Padova , Italy

2. Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova , via F. Marzolo 1, 35131 Padova , Italy

3. National Interuniversity Consortium of Materials Science and Technology (INSTM) , Florence , Italy

4. Department of Chemical Sciences and Materials Technologies (DSCTM) , National Research Council (CNR) , Piazzale A. Moro 7, 00185 Rome , Italy

Abstract

Abstract Theoretical calculations are proving as an essential tool to understand luminescence processes even for systems including lanthanide (Ln3+) ions. As such, the aim of this study is that of presenting a general and comprehensive theoretical protocol based on DFT calculations to rationalize and possibly drive the design of new luminescent Ln3+ complexes through the ab initio determination of the electronic properties of a ligand and two Eu3+ complexes. Different theoretical methodologies have been combined to look into the excited state energies, the luminescence quantum yield, and the energy transfer processes. The protocol has been validated for a β-diketone ligand and two Eu3+ complexes, which contain, in addition to the main ligand, ethanol or triphenylphosphine oxide. Moreover, by starting from the geometry optimization up to the estimation of the ligands’ singlet and triplet lowest energy states, theoretical results quantitatively agree with luminescence experimental parameters, providing at the same time insights into the different energy transfer processes. The different quantum yields of the two complexes have been correctly reproduced.

Funder

Consiglio Nazionale delle Ricerche

Universitàdegli Studi di Padova

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3