Investigating the bioactive compounds from Capsicum annum as a probable alternative therapy for prostate cancer treatment: a structure-based drug design approach

Author:

Abdul-Hammed Misbaudeen1,Adedotun Ibrahim Olaide12,Ismail Ubeydat Temitope1,Ayankoso Saheed Ademola3,Abdul-razaq Roqeebah1,Olajide Monsurat14,Lawal Teslim Alabi1

Affiliation:

1. Pure and applied Chemistry , 119059 Ladoke Akintola University of Technology , Ogbomoso , Nigeria

2. University of Ibadan , Ibadan , Oyo , Nigeria

3. Department of Chemistry , Emmanuel Alayande University of Education , Oyo Town , Nigeria

4. Crescent University , Abeokuta , Nigeria

Abstract

Abstract Prostate cancer remains a significant global health challenge, necessitating the exploration of novel therapeutic approaches. Androgen receptor (AR) signaling plays a critical role in prostate cancer progression and is a primary target for therapy. This study investigates the potential of phytochemicals from Capsicum annuum (Bell pepper) along with two common standand drugs (Apalutamide and Enzalutamide) as inhibitors of the human androgen receptor (AR) and prostate-specific membrane antigen (PSMA). Utilizing computer-aided drug design techniques, molecular docking studies were conducted to evaluate the binding affinities of selected ligands against AR (PDB ID: 1XOW) and PSMA (PDB ID: 2XEI), their ADMET properties, drug-likeness, oral bioavailability, and bioactivity profiles were also examined. Coumaroylquinic acid and 5-O-caffeoylquinic acid methyl-ester emerged as top-performing ligands, demonstrating strong binding affinities of −9.4 kcal/mol and −9.2 kcal/mol, respectively, against PSMA. Additionally, molecular dynamics simulations provided insights into the stability of protein-ligand complexes, with Coumaroylquinic acid exhibiting a stable binding conformation throughout the simulation. These findings suggest the potential of C. annuum phytochemicals, particularly Coumaroylquinic acid and 5-O-caffeoylquinic acid methyl-ester, as promising inhibitors of PSMA. Moreover, other ligands (Caffeoylglucoside and 1-O-galloyl-beta-d-glucose) identified in the study demonstrate interactions with AR, highlighting a multifaceted approach to prostate cancer treatment. Overall, this study underscores the potential of C. annuum phytochemicals as a source of novel therapeutic agents for prostate cancer, laying the groundwork for further lead optimization efforts.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3