The preparation of permanent antistatic additive based on poly(ether-b-amide) copolymers and its modification effect on polyamide 6

Author:

Yuan Lihui12,Zhu Ping1,Wang Yu1,Dong Xia12,Wang Dujin12

Affiliation:

1. Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Engineering Plastics , 53030 Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China

2. University of Chinese Academy of Sciences , Beijing 100049 , P. R. China

Abstract

Abstract Conventional polymers have typically been used in the packaging of various electronic devices; however, due to the inherent electrically insulating properties these materials fail to dissipate static charges. To address this issue, novel poly(ether-b-amide) (PEBA) segmented copolymers consisting of uniform rigid oxalamide and flexible polyethylene glycol (PEG) were synthesized via melt polycondensation. The influence of PEG molecular weight and the spacer length separating two oxalamide units on the condensed structure, mechanical performance, and antistatic properties was systematically investigated. Fourier-transform infrared (FTIR) demonstrated strongly hydrogen bonded and highly ordered oxalamide hard segments with the degree of ordering between 71 and 85 % even at low levels. Mechanical behavior results showed that segmented copolymers have an obvious yield point, an elastic modulus between 20 and 30 MPa, and strain at break exceeding 2000 %. Meanwhile, such copolymers possessed low surface resistivity, as low as 107 Ω, which is significantly less than that of commercial antistatic additives. The antistatic effect of PEBA on polyamide 6 (PA6) was also investigated, revealing that when the content reached 30 wt%, the surface resistivity of the alloys decreased from 1013 Ω to 1011 Ω and remained stable after 40 days, even after water washing treatment. Overall, these findings illustrate that the newly synthesized PEBA copolymers demonstrate outstanding long-term antistatic properties and provide valuable insights for the development of polyether-based multiblock copolymer antistatic agents.

Funder

National Key Research and Development Program of China

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3