Nitrogen leaching mitigation by tithonia biochar (Tithochar) in urea fertilizer treated sandy soil

Author:

Oyeyiola Yetunde Bunmi12,Lewu Francis Bayo3,Opeolu Beatrice Olutoyin1

Affiliation:

1. Environmental Chemistry and Toxicology Research Group, Department of Environmental and Occupational Studies , Faculty of Applied Sciences, Cape Peninsula University of Technology , Cape Town , South Africa

2. Department of Crop Production and Soil Science , Faculty of Agricultural Science, Ladoke Akintola University of Technology , Ogbomosho , Nigeria

3. Department of Agriculture , Faculty of Applied Sciences, Cape Peninsula University of Technology , Cape Town , South Africa

Abstract

Abstract Nitrogenous fertilizer drift from farmlands accelerates nitrogen loads in groundwaters. Biochar potential to mitigate nitrogen leaching in urea treated sandy soil was monitored in a four weeks screenhouse leaching column experiment. The trial was a factorial combination of two biochar types (B1 and B2 applied at 5 t/ha) and two urea treatments (with urea at 120 kg/ha and without urea) laid in completely randomized design with three replications. Control that received neither urea nor biochar was compared. Four weekly leaching events were conducted in each leaching column containing 300 g soil amended with appropriate treatments. Amaranthus hybridus was the test crop. The NH4-N and NO3-N leached were generally highest during the week 2 leaching event such that total NO3-N leached was 427.3 % higher than total NH4-N leached with highest contributions from sole urea treatment. Biochar pretreatment reduced total N leached by 9.5 (B1) and 26.8 % (B2) relative to sole urea. Percentage of N added lost to leaching was highest (34.1 %) in sole urea treatment with B1 and B2 pretreatment reducing the value by 54.5 and 46.9 % respectively. Correlation analysis revealed electrical conductivity of the leachate and soil as dominant indicators for N leached in the soil studied.

Funder

Tertiaty Trust Fund (TETFUND), Nigeria

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3