Ablation and thermal effects in treatment of hard and soft materials and biotissues using ultrafast-laser pulse-train bursts

Author:

Marjoribanks Robin S.,Dille Christian,Schoenly Joshua E.,McKinney Luke,Mordovanakis Aghapi,Kaifosh Patrick,Forrester Paul,Qian Zuoming,Covarrubias Andrés,Feng Yuanfeng,Lilge Lothar

Abstract

AbstractUltrafast laser pulses (≤1 ps) are qualitatively different in the nature of their interaction with materials, including biotissues, as compared to nanosecond or longer pulses. This can confer pronounced advantages in outcomes for tissue therapy or laser surgery. At the same time, there are distinct limitations of their strong-field mode of interaction. As an alternative, it is shown here that ultrafast laser pulses delivered in a pulse-train burst mode of radiant exposure can access new degrees of control of the interaction process and of the heat left behind in tissues. Using a laser system that delivers 1 ps pulses in 20 μs pulse-train bursts at 133 MHz repetition rates, a range of heat and energy-transfer effects on hard and soft tissue have been studied. The ablation of tooth dentin and enamel under various conditions, to assess the ablation rate and characterize chemical changes that occur, are reported. This is compared to ablation in agar gels, useful live-cell-culture phantom of soft tissues, and presenting different mechanical strength. Study of aspects of the optical science of laser-tissue interaction promises to make qualitative improvements to medical treatments using lasers as cutting and ablative tools.

Publisher

Walter de Gruyter GmbH

Subject

Dermatology,Surgery

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3