Comparison of Phenotype and Combined Index Selection at Optimal Breeding Population Size Considering Gain and Gene Diversity

Author:

Li H.1,Lindgren D.2

Affiliation:

1. College of Forest Resources and Environments, Nanjing Forestry University, Nanjing 210037, P. R. China

2. Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå , Sweden

Abstract

Abstract A breeding program was simulated in this study. Two alternative ways of selecting the breeding population for the following generation was compared. Phenotypic selection, which means to select just on the individual performance, and combined index selection, which means selection on predicted breeding value for each individual obtained by weighting family average and individual phenotype, were compared. The plant number (testing resource) and gene diversity (status number, Ns) were kept constant, but the breeding population size was variable and chosen for maximizing gain for the particular breeding scenario. At low and medium heritability phenotypic selection was inferior to combined index selection. Only when heritability was high phenotypic selection was as efficient (generation 1) as or more efficient (generation 5) than combined index selection. This contrasts to earlier studies done under constant breeding population size, where selection methods appeared similar. The advantage in gain of combined index selection is usually at a larger breeding population size. At limited heritability and breeding population size the difference is considerable. When breeding population size was kept rather small (<100), and the heritability limited, combined index selection can result in slightly higher gain than phenotypic selection at the same gene diversity, but this was at the cost of a much larger breeding population. Phenotypic selection and combined index selection appears as rather similar for many cases in this simple model used in this study. Considering other advantages with phenotypic selection, it may often be regarded as a competitive alternative.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3