Numerical study on aerodynamic performance of an intake duct affected by ground effect

Author:

Shi Yalin12,Chen Lingling2,Chen Pengfei3,Yang Qingzhen2,Shi Yongqiang2,Yang Hua3

Affiliation:

1. Aerospace Era Feihong Technology Co., Ltd , Beijing , 102100 , China

2. School of Power and Energy , Northwestern Polytechnical University , Shaanxi , Xi’an 710072 , China

3. China Sichuan Gas Turbine Research Institute , Sichuan , Mianyang , 621000 , China

Abstract

Abstract This paper numerically studied the aerodynamic performance of an intake duct affected by the ground effect on a mobile test bench. The simulations were conducted under no wind and headwind conditions. The time evolution of the ground effect indicates that the coherent structure of the vortex system is mainly composed of the ground vortex, the horse-shoe vortex, and the creeping vortex under no wind condition. And it is mainly composed of the ground vortex, the trailing vortex, and the creeping vortex under headwind condition. Compared to the results under no wind condition, the integral vorticity of the ground vortex is larger than that under the headwind condition. The difference of the total pressure recovery coefficient is small, and the total pressure distortion index is large. The results show that with the decrease of the velocity at the intake duct outlet, the intensity of the ground vortex decreases, and the total pressure recovery coefficient at the intake duct outlet increases.

Funder

Central Stable Financial Support Special Project

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3