Supersonic jet mixing in the presence of two annular co-flow streams

Author:

S Rajkumar12,Vasanthakumar Parthasarathy2,Suseela Moorthi Aravindh Kumar1ORCID,Rathakrishnan Ethirajan3

Affiliation:

1. Department of Aerospace Engineering , SRM Institute of Science and Technology , Kattankulathur , Chengalpattu , Tamil Nadu , 603203 , India

2. School of Aeronautical Sciences , Hindustan Institute of Technology and Science , Padur , Chennai , Tamil Nadu , 603103 , India

3. Department of Aerospace Engineering , Indian Institute of Technology Kanpur , Kanpur , Uttar Pradesh , 208016 , India

Abstract

Abstract The mixing characteristics of a Mach 1.9 jet at three levels of overexpansion, corresponding to nozzle pressure ratio (NPR) 3, 4 and 5, in the presence of a sonic co-flow (secondary flow), which was submerged in a subsonic co-flow (tertiary flow) was studied experimentally. For these NPRs the secondary co-flow is sonic with underexpanded levels and the tertiary flow Mach number was found to be 0.41, 0.71 and 0.85, respectively. The centerline decay results of the primary jet show that the jet mixing is abated by the co-flow, at all levels of expansion. However, in spite of the reduced mixing encountered by the supersonic primary jet, the waves in the jet core are found to be weaker in the presence of co-flows. This may be regarded as an advantage from the shock associated noise point of view, in accordance with Tam’s theory; which states weaker the waves in the core, the lesser is the shock associated noise. The results show that the reduced mixing environment caused by the sonic co-flow alone leads to the jet core elongation of about 20%, 23% and 49%, at NPRs 3, 4 and 5, respectively. The core length of the jet is found to increase by 29%, 46% and 62%, respectively, at NPRs 3, 4 and 5, when both sonic and subsonic co-flow streams are present.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3