Affiliation:
1. Department of Mechanical Engineering , Defence Institute of Advanced Technology , Girinagar , Pune 411025 , India
2. Regional Center for Military Airworthiness (Engines) , Bangalore 560093 , India
Abstract
Abstract
A 3D numerical analysis on an adiabatic flat plate for multi-hole trench cooling with forward, backward and mixed injection holes is performed in the current investigation. The numerical setup is validated before the performances of different cooling configurations are compared. The effect of three different multi-hole trench arrangements, square-diamond, long-diamond, and super-long-diamond with constant perforated percentage (3.27%), on film cooling performance is studied at blowing ratio 1.0. The row-to-row interaction between coolant jets and mainstream is analysed, and lateral film cooling effectiveness is calculated downstream. The dimensionless temperature contour overlaid with streamlines concluded that the SLD trench hole arrangement with forward injection forms a developed effusion layer due to counter-rotating vortex pairs, which helps in proper mixing of coolant jets into the mainstream and improves film cooling effectiveness in lateral as well as in longitudinal direction. It is observed that super-long-diamond arrangement with forward injection provides the highest film cooling effectiveness than square-diamond and long-diamond arrangements and favours early development of the coolant film layer.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献