Affiliation:
1. Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
Abstract
AbstractThe present study aimed to investigate the influence of a number of fiber parameters including fiber type, content and hybridization on strength and ductility of polymer fiber reinforced concrete (PFRC) and steel fiber reinforced concrete (SFRC) used mostly in tunneling practices as the primary shotcrete lining. Numerous cylindrical and prismatic beams were casted and undergone various tests in which main previously mentioned fiber traits varied. It was understood that SFRC excels at every mechanical feature in comparison to PFRC; however, such transcendence found predominant in compressive strength but marginal in flexural and tensile strength. Despite being classified under different compressive strength classes (SFRC in the upper and PFRC in the lower class) according to EFNARC, both FRC types fell under a similar flexural class (at 4% of fiber fraction); a result possibly in debt to excellent bonding properties and more slender polymer fibers. Tensile strength of PFRC was measured lower than SFRC. Augmentation of fiber content positively affected mechanical characteristics of FRC at most cases. Hybridization of different fibers at a specific range of fiber mixing proportions was observed to have advantageous impacts on ductility and strength of a more corrosive resistant and cost efficient hybrid fiber reinforced concrete (HFRC).
Subject
Mechanics of Materials,Materials Science (miscellaneous)
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献